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Abstract

An elastic double-shell model is presented for the buckling and postbuckling of a double-walled carbon nanotube

subjected to external hydrostatic pressure. The analysis is based on a continuum mechanics model in which each tube of

a double-walled carbon nanotube is described as an individual elastic shell and the interlayer friction is negligible

between the inner and outer tubes. The governing equations are based on higher order shear deformation shell theory

with a von K�arm�an–Donnell-type of kinematic nonlinearity. The van der Waals interaction between the inner and outer

nanotubes and the nonlinear prebuckling deformations of the shell are both taken into account. A boundary layer

theory of shell buckling is extended to the case of double-walled carbon nanotubes under hydrostatic pressure. A

singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths.

Numerical results reveal that the single-walled carbon nanotube has a stable postbuckling path, whereas the double-

walled carbon nanotube has an unstable postbuckling behavior due to the presence of van der Waals interaction forces.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes have received considerable attention in many areas of science and industry since they

were first reported in 1991 (Iijima, 1991). Carbon nanotubes are cylindrical macromolecules composed of

carbon atoms in a periodic hexagonal arrangement. Carbon nanotubes possess extraordinary physical

properties such as high stiffness-to-weight and strength-to-weight ratios and enormous electrical and
thermal conductivities. Many believe that carbon nanotubes may provide the ultimate reinforcing materials

for the development of a new class of nanocomposites (see, Thostenson et al., 2001; Qian et al., 2002). To

realize the potential benefits, fundamental understanding of carbon nanotubes is required. Many studies on

the material properties of single-walled and/or multi-walled carbon nanotubes under hydrostatic pressure
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have been performed, see, for example Reich et al. (2000, 2002), Tang et al. (2000, 2002) and Liu et al.

(2001). Buckling phenomenon was described by singularities in the strain energy profile (Yakobson et al.,

1996). Two theoretical approaches to understanding and predicting the buckling behavior of carbon

nanotubes are atomistic molecular-dynamics simulations and continuum mechanics (see Yakobson et al.,
1996; Wong et al., 1997; Ru, 2000a; Das and Wille, 2002; Harik, 2002). Yakobson et al. (1996) presented a

molecular-dynamics simulation of single-walled carbon nanotubes under axial buckling, bending and

torsion, but they did not simulate nanotubes under hydrostatic pressure. Molecular-dynamics simulations

have provided abundant results for the understanding of buckling behaviors of carbon nanotubes. How-

ever, molecular-dynamics simulations are currently limited to very small length and time scales and cannot

deal with the large-sized atomic system, due to the limitations of current computing power. Moreover, at

the nanoscale, experiments are extremely difficult and expensive to conduct. So far, no buckling experi-

ments have been reported for nanotubes under external hydrostatic pressure. As a result, the continuum
mechanics models are expected for the theoretical analysis of buckling behavior of carbon nanotubes.

The importance of the van der Waals interaction and its role in the energetic and elastic deformation of

‘‘molecular’’ systems have been extensively discussed (Ruoff et al., 1993; Hertel et al., 1998). Ru (2000b,

2001) proposed a continuum shell model to study compressive buckling of a double-walled carbon nano-

tube in the presence of the intertube van der Waals forces, but his solutions are approximate due to the

assumption of equally axial stress resultants of the outer and inner tubes. Recently, Wang et al. (2003a,b)

extend the Ru�s continuum shell model to the case of multi-walled carbon nanotubes under radial pressure

and combined loading. In these studies, the classical shell theory, i.e. the theory based on the Kirchhoff–
Love hypothesis, is used and therefore the transverse shear deformation is usually not accounted for. It is

well known this theory is adequate for cylindrical shells when the radius-to-thickness ratio is greater than

20. It has been shown (Yakobson et al., 1996; Das and Wille, 2002; Liu and Chen, 2003), most carbon

nanotubes have low values of radius-to-thickness ratio. As a result, the continuum mechanics model for

multi-walled carbon nanotubes requires the use of shear deformation shell theory and involves an interlayer

van der Waals interaction. To study the maximum bearing loading under large strain, nonlinear post-

buckling behavior of carbon nanotubes has to be investigated.

The main objective of the present study is to predict the postbuckling behavior of double-walled carbon
nanotubes subjected to hydrostatic pressure. In the present study all thermal, quantum and electromagnetic

effects are neglected. Following Ru (2000b, 2001) an elastic double-shell model is proposed and each tube is

described as an individual elastic shell and the interlayer friction is negligible between the inner and outer

tubes. The governing equations are based on higher order shear deformation shell theory with a von

K�arm�an–Donnell-type of kinematic nonlinearity. The boundary layer theory for shell buckling suggested

by Shen and Chen (1988, 1990) is extended to the case of double-walled carbon nanotubes. A singular

perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths.

The nonlinear prebuckling deformations of the shell and the van der Waals interaction forces are both
taken into account. The numerical illustrations show the full nonlinear postbuckling response of a double-

walled carbon nanotube under hydrostatic pressure, although a comparison is still not available due to the

lack of relevant experimental results or molecular-dynamics simulations.
2. Theoretical development

Consider a double-walled carbon nanotube modeled as a shell system which is subjected to external

pressure q. The outer and inner tubes are assumed to have the same thickness t, length L and effective

material constants E and m, and have mean radii RI and RII, respectively, as shown in Fig. 1. Each shell is

referred to a coordinate system ðX ; Y ; ZÞ in which X and Y are in the axial and circumferential directions of
the shell and Z is in the direction of the inward normal to the middle surface. The corresponding dis-
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Fig. 1. An elastic shell model for a double-walled carbon nanotube under hydrostatic pressure.
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placements are designated by U , V and W . �Wx and �Wy are the rotations of normals to the middle surface

with respect to the Y - and X -axes, respectively. The origin of the coordinate system is located at the end of

each shell on the middle plane. Let W ðX ; Y Þ be the transverse deflection of each tube, and F ðX ; Y Þ be the

stress function for the stress resultants defined by Nx ¼ F ;yy , Ny ¼ F ;xx and Nxy ¼ �F ;xy , where a comma

denotes partial differentiation with respect to the corresponding coordinates.

The van der Waals interaction potential, as a function of interlayer spacing between adjacent tubes, can

be estimated by the Lennard-Jones model (see Girifalco and Lad, 1956; Girifalco, 1991). Using a method
described in Girifalco and Lad (1956) and Girifalco (1991), the van der Waals force exerted on any atom on

a tube can be estimated by adding up all forces between the atom and all atoms on the other tube. To this

end, the interaction forces between the inner and outer shells can be assumed to be a function of the normal

distance between the inner and outer tubes at that point, i.e. p ¼ p0 þ C½W IIðX ; Y Þ � W IðX ; Y Þ�, in which

and what follows the subscript I and II refer to the outer and inner tubes, respectively. p0 is a constant

representing the initial uniform van der Waals pressure between two prior to buckling, and C is a constant

which can be estimated as the second derivative of the van der Waals energy-interlayer spacing. In parti-

cular, the equilibrium distance between a carbon atom and a flat monolayer is around 0.34 nm (Girifalco
and Lad, 1956), so that the initial pressure p0 between the inner and outer tubes is zero or negligible if the

initial interlayer spacing is 0.34 nm.

It has been shown (Cumings and Zettl, 2000; Kolmogorov and Crespi, 2000) the friction energy barrier

between adjacent tubes is so low that the tubes could almost freely slid and rotate toward each other. We

assume that no sliding occurs between the outer and inner tubes. We also assume that the tube is empty,

and no initial internal pressure exists. Based on higher order shear deformation shell theory (Reddy and

Liu, 1985), the K�arm�an–Donnell-type nonlinear differential equations for the outer tube, including van der

Waals interaction forces, have readily been derived and can be expressed in terms of a stress function F I,
two rotations �WxI and �WyI, and two transverse displacements W I and W II. They are
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eL11ðW IÞ � eL12ð �WxIÞ � eL13ð �WyIÞ �
1

RI

F I;xx ¼ eLðW I; F IÞ þ p0 þ CðW II � W IÞ þ q ð1Þ

eL21ðF IÞ þ
1

RI

W I;xx ¼ � 1

2
eLðW I;W IÞ ð2Þ

eL31ðW IÞ þ eL32ð �WxIÞ � eL33ð �WyIÞ ¼ 0 ð3Þ

eL41ðW IÞ � eL42ð �WxIÞ þ eL43ð �WyIÞ ¼ 0 ð4Þ
and for the inner tube they are
eL11ðW IIÞ � eL12ð �WxIIÞ � eL13ð �WyIIÞ �
1

RII

F II;xx ¼ eLðW II; F IIÞ �
RI

RII

½p0 þ CðW II � W IÞ� ð5Þ

eL21ðF IIÞ þ
1

RII

W II;xx ¼ � 1

2
eLðW II;W IIÞ ð6Þ

eL31ðW IIÞ þ eL32ð �WxIIÞ � eL33ð �WyIIÞ ¼ 0 ð7Þ

eL41ðW IIÞ � eL42ð �WxIIÞ þ eL43ð �WyIIÞ ¼ 0 ð8Þ
where the linear operators eLijð Þ and the nonlinear operator eLð Þ are defined as in Shen (2001). Because

the nanotubes are assumed to be isotropic, the shell stiffnesses used in these operators will have

A�
ij ¼ A�1

ij ¼ ðEtÞ�1
and D�

ij ¼ Dij ¼ D ¼ Et3=½12ð1� m2Þ�. Note that Eqs. (1)–(8) are coupled and should be

solved simultaneously.

The two end edges of both outer and inner tubes are assumed to be simply supported or clamped, so that
the boundary conditions are X ¼ 0, L:
W ¼ �Wy ¼ 0 ð9aÞ

Mx ¼ Px ¼ 0 ðsimply supportedÞ ð9bÞ

�Wx ¼ 0 ðclampedÞ ð9cÞZ 2pRI

0

NxI dY þ
Z 2pRII

0

NxII dY þ pR2
Iq ¼ 0 ð9dÞ
where Mx is the bending moment and Px is higher order moment, as defined in Reddy and Liu (1985). Also

we have the closed (or periodicity) condition for each tube
Z 2pRI

0

oV
oY

dY ¼ 0 ð10aÞ
or
 Z 2pRI

0

1

Et
o2F
oX 2

�"
� m

o2F
oY 2

�
þ W

RI

� 1

2

oW
oY

� �2
#
dY ¼ 0 ð10bÞ
Because of Eq. (10a), the in-plane boundary condition V ¼ 0 (at X ¼ 0; L) is not needed in Eq. (9a).
It is assumed that the end-shortening displacements of the outer and inner tubes are identical. The

average end-shortening relationship of each shell is defined as
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Dx

L
¼ � 1

2pRJL

Z 2pRJ

0

Z L

0

oU
oX

dX dY

¼ � 1

2pRJL

Z 2pRJ

0

Z L

0

1

Et
o2F
oY 2

�"
� m

o2F
oX 2

�
� 1

2

oW
oX

� �2
#
dX dY ðJ ¼ I; IIÞ ð11Þ
where Dx is shell end-shortening displacement in the X -direction.
3. Analytical method and asymptotic solutions

Having developed the theory, we are in a position to solve Eqs. (1)–(8) with boundary conditions (9).

Before proceeding, it is convenient first to define the following dimensionless quantities [with cijk in Eqs.

(21) and (A.3) below are defined as in Shen (2001)]
x ¼ p
X
L
; y ¼ Y

RI

; b ¼ L
pRI

; e ¼ p2RIt

L2½12ð1� m2Þ�1=2
; c0 ¼

RII

RI

; C0 ¼
CL4

p4D
; C1 ¼

p0RI

Etb2

W ¼ e
W
t
½12ð1� m2Þ�1=2; F ¼ e2

�F
D
; ðWx;WyÞ ¼ e2

L
p
ð �Wx; �WyÞ

t
½12ð1� m2Þ�1=2

ðMx; PxÞ ¼ e2
L2

p2

½12ð1� m2Þ�1=2

Dt
Mx;

4

3t2
Px

� �
; qcl ¼

1

3

2

3

� �1=2 pE

ð1� m2Þ3=4
RI

L
t
RI

� �5=2

kq ¼
q
qcl

; dq ¼
ðDx=LÞ

1
3

2
3

� �1=2 p
ð1�m2Þ3=4

RI

L
t
RI

� �3=2

ð12Þ
The nonlinear equations (1)–(8) may then be written in dimensionless form as
e2½L11ðWIÞ � C0ðWII � WIÞ� � eL12ðWxIÞ � eL13ðWyIÞ � FI;xx ¼ b2LðWI; FIÞ þ C1 þ
4

3
ð3Þ1=4kqe3=2 ð13Þ

L21ðFIÞ þ WI;xx ¼ � 1

2
b2LðWI;WIÞ ð14Þ

eL31ðWIÞ þ L32ðWxIÞ � L33ðWyIÞ ¼ 0 ð15Þ

eL41ðWIÞ � L42ðWxIÞ þ L43ðWyIÞ ¼ 0 ð16Þ
and
e2½c0L11ðWIIÞ þ C0ðWII � WIÞ� � ec0L12ðWxIIÞ � ec0L13ðWyIIÞ � FII;xx ¼ c0b
2LðWII; FIIÞ � C1 ð17Þ

c0L21ðFIIÞ þ WII;xx ¼ � 1

2
c0b

2LðWII;WIIÞ ð18Þ

eL31ðWIIÞ þ L32ðWxIIÞ � L33ðWyIIÞ ¼ 0 ð19Þ

eL41ðWIIÞ � L42ðWxIIÞ þ L43ðWyIIÞ ¼ 0 ð20Þ
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where
L11ð Þ ¼ c110
o4

ox4
þ 2c112b

2 o4

ox2 oy2
þ c114b

4 o4

oy4

L12ð Þ ¼ c120
o3

ox3
þ c122b

2 o3

oxoy2

L13ð Þ ¼ c131b
o3

ox2 oy
þ c133b

3 o3

oy3

L21ð Þ ¼ o4

ox4
þ 2b2 o4

ox2 oy2
þ b4 o4

oy4

L31ð Þ ¼ c31
o

ox
þ c310

o3

ox3
þ c312b

2 o3

oxoy2

L32ð Þ ¼ c31 � c320
o2

ox2
� c322b

2 o2

oy2

L33ð Þ ¼ c331b
o2

oxoy

L41ð Þ ¼ c41b
o

oy
þ c411b

o3

ox2 oy
þ c413b

3 o3

oy3

L42ð Þ ¼ L33ð Þ

L43ð Þ ¼ c41 � c430
o2

ox2
� c432b

2 o2

oy2

Lð Þ ¼ o2

ox2
o2

oy2
� 2

o2

oxoy
o2

oxoy
þ o2

oy2
o2

ox2

ð21Þ
The boundary conditions of Eq. (9) become

x ¼ 0; p:
W ¼ Wy ¼ 0 ð22aÞ
Mx ¼ Px ¼ 0 ðsimply supportedÞ ð22bÞ
Wx ¼ 0 ðclampedÞ ð22cÞ

1

2p

Z 2p

0

b2 o
2FI
oy2

dy þ 1

2p

Z 2pc0

0

b2 o
2FII
oy2

dy þ 2

3
ð3Þ1=4kqe3=2 ¼ 0 ð22dÞ
and the closed condition of Eq. (10b) becomes
Z 2p

0

o2FI
ox2

�"
� mb2 o

2FI
oy2

�
þ WI �

1

2
b2 oWI

oy

� �2
#
dy ¼ 0 ð23Þ
The unit end-shortening relationship becomes
dq ¼ � ð3Þ3=4

8p2
e�3=2

Z 2p

0

Z p

0

b2 o
2FI
oy2

�"
� m

o2FI
ox2

�
� 1

2

oWI

ox

� �2
#
dxdy ð24aÞ

¼ � ð3Þ3=4

8p2c0
e�3=2

Z 2pc0

0

Z p

0

b2 o
2FII
oy2

�"
� m

o2FII
ox2

�
� 1

2

oWII

ox

� �2
#
dxdy ð24bÞ
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In Eq. (12), we introduce an important parameter e, which can be re-written as e ¼ p2=ðZB

ffiffiffiffiffi
12

p
Þ. For a

double-walled carbon nanotube we define ZB ¼ ðL2=RItÞ½1� m2�1=2, and for a single-walled carbon nanotube

we define ZB ¼ ðL2=RtÞ½1� m2�1=2, that is the Batdorf shell parameter, which should be greater than 2.85 in

the case of classical linear buckling analysis (Batdorf, 1947). When ZB > 2:85, then e < 1. It has been shown
(Yakobson et al., 1996; Das and Wille, 2002; Liu and Chen, 2003), carbon nanotubes will have large values

of ZB, so that we always have e � 1. When e < 1, both Eqs. (13)–(20) are of the boundary layer type and

may then be solved by means of a singular perturbation technique. The essence of this procedure, in the

present case, is to assume that
W ¼ wðx; y; eÞ þ eW ðx; n; y; eÞ þ bW ðx; f; y; eÞ
F ¼ f ðx; y; eÞ þ eF ðx; n; y; eÞ þ bF ðx; f; y; eÞ
Wx ¼ wxðx; y; eÞ þ ~Wxðx; n; y; eÞ þ Ŵxðx; f; y; eÞ
Wy ¼ wyðx; y; eÞ þ ~Wyðx; n; y; eÞ þ Ŵyðx; f; y; eÞ

ð25Þ
where e is a small perturbation parameter (provided ZB > 2:85) as defined in Eq. (12) and wðx; y; eÞ,
f ðx; y; eÞ, wxðx; y; eÞ, wyðx; y; eÞ are called regular solutions of the shell, eW ðx; n; y; eÞ, eF ðx; n; y; eÞ, ~Wxðx; n; y; eÞ,
~Wyðx; n; y; eÞ and bW ðx; f; y; eÞ, bF ðx; f; y; eÞ, Ŵxðx; f; y; eÞ, Ŵyðx; f; y; eÞ are the boundary layer solutions near

the x ¼ 0 and x ¼ p edges, respectively, and n and f are the boundary layer variables, defined as
n ¼ x=
ffiffiffiffi
e;

p
f ¼ ðp� xÞ=

ffiffi
e

p
ð26Þ
This means the width of the boundary layers is of order
ffiffiffiffiffi
Rt

p
. In Eq. (25) the regular and boundary layer

solutions are taken in the forms of perturbation expansions as
wðx; y; eÞ ¼
X
j¼3

e j=2wðj=2Þðx; yÞ; f ðx; y; eÞ ¼
X
j¼0

ejf ðjÞðx; yÞ

wxðx; y; eÞ ¼
X
j¼1

e jðwxÞ
ðjÞðx; yÞ; wyðx; y; eÞ ¼

X
j¼1

ejðwyÞ
ðjÞðx; yÞ

ð27aÞ

eW ðx; n; y; eÞ ¼
X
j¼1

e j=2þ1 eW ðj=2þ1Þðx; n; yÞ; eF ðx; n; y; eÞ ¼ X
j¼1

e j=2þ2eF ðj=2þ2Þðx; n; yÞ

~Wxðx; n; y; eÞ ¼
X
j¼1

eðjþ3Þ=2ð ~WxÞðjþ3Þ=2ðx; n; yÞ; ~Wyðx; n; y; eÞ ¼
X
j¼1

e j=2þ2ð ~WyÞðj=2þ2Þðx; n; yÞ
ð27bÞ

bW ðx; f; y; eÞ ¼
X
j¼1

ej=2þ1 bW ðj=2þ1Þðx; f; yÞ; bF ðx; f; y; eÞ ¼ X
j¼1

e j=2þ2bF ðj=2þ2Þðx; f; yÞ

Ŵxðx; f; y; eÞ ¼
X
j¼1

eðjþ3Þ=2ðŴxÞðjþ3Þ=2ðx; f; yÞ; Ŵyðx; f; y; eÞ ¼
X
j¼1

e j=2þ2ðŴyÞðj=2þ2Þðx; f; yÞ
ð27cÞ
The initial buckling mode is assumed to have the form
wð2Þ
I ðx; yÞ ¼ Að2Þ

11 sinmx sin ny ð28aÞ

wð2Þ
II ðx; yÞ ¼ a1A

ð2Þ
11 sinmx sin ny ð28bÞ
in which a1 is a constant and can be determined later.

Substituting Eqs. (25)–(27) into Eqs. (13)–(20), and collecting terms of the same order of e, we obtain
three sets of perturbation equations for the regular and boundary layer solutions, respectively, the details of

which may be found in Shen (2002).
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Then using Eqs. (28a) and (28b) to solve these perturbation equations of each order, and matching the

regular solutions with the boundary layer solutions at each end of the shell, we obtain the asymptotic

solutions. For the outer tube, they are
WI ¼ e3=2 Að3=2Þ
00

�
� Að3=2Þ

00 cos/
xffiffi
e

p
�

þ að1Þ10 sin/
xffiffi
e

p
�
exp

�
� a

xffiffi
e

p
�
� Að3=2Þ

00 cos/
p� xffiffi

e
p

�
þ að1Þ10 sin/

p� xffiffi
e

p
�

� exp

�
� a

p� xffiffi
e

p
�	

þ e2½Að2Þ
11 sinmx sin ny� þ e4½Að4Þ

00 þ Að4Þ
20 cos 2mxþ Að4Þ

02 cos 2ny� þOðe6Þ ð29Þ

FI ¼ �Bð0Þ
00

y2

2
� C1

�
þ b2Cð0Þ

00

� x2

2
þ e2

�
� Bð2Þ

00

y2

2
� b2Cð2Þ

00

x2

2
þ Bð2Þ

11 sinmx sin ny
	

þ e5=2 Að3=2Þ
00 bð5=2Þ01 cos/

xffiffi
e

p
��

þ bð5=2Þ10 sin/
xffiffi
e

p
�
exp

�
� a

xffiffi
e

p
�

þ Að3=2Þ
00 bð5=2Þ01 cos/

p� xffiffi
e

p
�

þ bð5=2Þ10 sin/
p� xffiffi

e
p

�
exp

�
� a

p� xffiffi
e

p
�	

þ e4
�
� Bð4Þ

00

y2

2
� b2Cð4Þ

00

x2

2
þ Bð4Þ

20 cos 2mxþ Bð4Þ
02 cos 2ny

	
þOðe6Þ ð30Þ

WxI ¼ e2 cð2Þ01 cos/
xffiffi
e

p
��

þ cð2Þ10 sin/
xffiffi
e

p
�
exp

�
� a

xffiffi
e

p
�
þ cð2Þ01 cos/

p� xffiffi
e

p
�

þ cð2Þ10 sin/
p� xffiffi

e
p

�
� exp

�
� a

p� xffiffi
e

p
�	

þ e3½Cð3Þ
11 cosmx sin ny� þ e5½Cð5Þ

20 sin 2mx� þOðe6Þ ð31Þ

WyI ¼ e3½Dð3Þ
11 sinmx cos ny� þ e5½Dð5Þ

02 sin 2ny� þOðe6Þ ð32Þ

Note that the effect of boundary layer solutions is negligible in the higher order terms, so that it does not

appear in Eq. (32). Then for the inner tube it is just necessary to replace �C1 and BðjÞ
00 in Eq. (30) with +C1

and bðjÞ00 , and omitting CðjÞ
00 . Because B

ðjÞ
00 and bðjÞ00 ðj ¼ 0; 2; 4Þ have different values, the axial stress resultants

NxI and NxII are unequal. Also we need to replace AðjÞ
ik , B

ðjÞ
ik , C

ðjÞ
ik and DðjÞ

ik in Eqs. (29)–(32) with �AðjÞ
ik ,

�BðjÞ
ik ,

�CðjÞ
ik

and �DðjÞ
ik , so that the asymptotic solutions WII, FII, WxII and WyII have a similar form.

Note that, all of the coefficients in the above equations are related and can be expressed in terms of Að2Þ
11 ,

but for the sake of brevity the detailed expressions are not shown, whereas a and / are given in detail in

Appendix A.

Because the end-shortening displacements of the outer and inner tubes are identical, upon substitution of
FI and FII into Eqs. (24a) and (24b), we have
a1 ¼
1

2B1

f½ðB2Þ2 þ 4B1B3�1=2 � B2g ð33Þ
All symbols used in Eq. (33) and Eqs. (34)–(36) below are also described in detail in Appendix A. From

Eqs. (33) and (A.1) below, it is evident that a1 < 1, then inner tube has a lower amplitude than the outer

tube. This follows from the fact that, due to the van der Waals interaction forces, the outer tube is subjected

to internal pressure and the inner tube is subjected to external pressure.

Next, upon substitution of FI and FII into the boundary condition (22d) and FI and WI into closed

condition (23) and Eq. (24a), the postbuckling equilibrium paths can be written as
kq ¼
1

4
ð3Þ3=4e�3=2½kð0Þq þ kð2Þq ðAð2Þ

11 e
2Þ2 þ � � �� ð34Þ
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and
dq ¼ dð0Þq þ dð2Þq ðAð2Þ
11 e

2Þ2 þ � � � ð35Þ
In Eqs. (34) and (35), ðAð2Þ
11 e

2Þ is taken as the second perturbation parameter relating to the dimensionless

maximum deflection. If the maximum deflection is assumed to be at the point ðx; yÞ ¼ ðp=2m; p=2nÞ, from
Eq. (29) we have
Að2Þ
11 e

2 ¼ Wm �H1W 2
m þ � � � ð36aÞ
where Wm is the dimensionless form of the maximum deflection of the outer tube that can be expressed as
Wm ¼ e
W
t
½12ð1

�
� m2Þ�1=2 �H2

	
ð36bÞ
Eqs. (34)–(36) are employed to obtain numerical results for full nonlinear postbuckling load-shortening

or load-deflection curves of double-walled carbon nanotubes under external hydrostatic pressure, from

which results for single-walled carbon nanotubes are obtained as a limiting case. The initial buckling load

can readily be obtained numerically, by setting W =t ¼ 0 (note that Wm 6¼ 0). In this case, the minimum

buckling load is determined by considering Eq. (34) for various values of the buckling mode ðm; nÞ, which
determine the number of half-waves in the X -direction and of full waves in the Y -direction. Note that
because of Eq. (29), the prebuckling deformation of the shell is nonlinear.
4. Numerical results and discussion

Numerical results are presented in this section for double-walled carbon nanotubes with different values

of shell parameter. As mentioned before, there are no numerical and experimental results available in the

literature, including previous works of Ru (Wang et al., 2003a) and Yakobson (Yakobson et al., 1996), for

the buckling of the single-walled and/or double-walled carbon nanotubes under hydrostatic pressure, no

direct comparison is made in this section.

Before we go to the discussion of the postbuckling response of double-walled carbon nanotubes under

hydrostatic pressure, let us first examine the buckling pressure of the double-walled carbon nanotube. From
Eq. (A.2c), and neglecting prebuckling deformations, one has
q ¼ qcl
ðn2b2 þ 0:5m2Þ

m4

g06

1þ c0
c0

�(
� C1n2b

2ð1� c0Þ
	
þ g08ð1
"

þ c0Þ �
C0ð1� a1Þ2

a1

#
p4

12Z
2

B

)
ð37Þ
where the critical pressure can be computed exactly with buckling mode ðm; nÞ. In particular, for single-

walled carbon nanotube without van der Waals forces, the critical pressure can be given by
q ¼ qcl
ðn2b2 þ 0:5m2Þ

m4

g06

"
þ g08

p4

12Z
2

B

#
ð38Þ
From Eqs. (37) and (38), it can be seen that the critical pressure for the double-walled carbon nanotube

is higher than that associated with the single-walled carbon nanotube with the same outside diameter and

material properties. In fact, for multi-walled carbon nanotubes the outside diameter increases as the
number of layers increases (Lu, 1997), and the material properties are dependent on the layer number

(Tu and Ou-Yang, 2002).
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Note that for thin shell model we have g08 ¼ g06 ¼ ðm2 þ n2b2Þ2, then relation (38) reduces to the classical

result (Timoshenko and Gere, 1961)
Table

Comp

Exa

1

2

3

aTh
q ¼ qcl
ðn2b2 þ 0:5m2Þ

m4

ðm2 þ n2b2Þ2

"
þ ðm2 þ n2b2Þ2 p4

12Z
2

B

#
ð39Þ
Taking this fact into account, we expect that Eq. (38) agrees well with molecular-dynamics simulations
for single-walled nanotubes.

Based on the continuum assumption, the key problem in computing is to determine the wall thickness

of the nanotube. Recently, Tu and Ou-Yang (2002) found that the effective Young�s modulus of the multi-

walled carbon nanotube is an apparent function of the number of layers, N , varying from 4.70 to 1.04 TPa

for N ¼ 1 to 1. They provided that the wall thickness of a single-walled carbon nanotube is 0.075 nm,

Poisson�s ratio m ¼ 0:34 and Young�s modulus E ¼ 4:70 TPa, whereas for a double-walled carbon nano-

tube E ¼ 1:70 TPa. This value is close to that of experimental results of Treacy et al. (1996), and is used

in the following computation. For the sake of illustration, we consider the initial interlayer spacing bet-
ween the inner and outer tube is 0.34 nm, as mentioned before, in such a case the initial pressure p0 is

zero or C1 ¼ 0. The van der Waals interaction constant is taken as C ¼ 99:187 GPa/nm (Wang et al.,

2003a,b).

The buckling pressure qcr (in GPa) for simply supported, double-walled carbon nanotubes subjected to

hydrostatic pressure are calculated and compared in Table 1. Three test examples are considered. Examples

1 and 2 are moderately thick double-walled carbon nanotubes, they have RI ¼ 1:095 nm, RII ¼ 0:68 nm and

RI ¼ 1:415 nm, RII ¼ 1:0 nm, respectively, while Example 3 is a thin double-walled carbon nanotube, which

has RI ¼ 3:415 nm and RII ¼ 3:0 nm. In Table 1 the single-walled carbon nanotube with R ¼ RI for each
case is treated as a comparator. In computation, the shell length-to-radius ratio L=RII ¼ 10 and each shell

thickness is taken as t ¼ 0:075 nm. The results show that the buckling pressure for the single-walled carbon

nanotube is higher than that of the double-walled carbon nanotube, due to the high value of Young�s
modulus E ¼ 4:70 TPa. The results also confirm that the critical pressure for the double-walled carbon

nanotube is higher than that of the single-walled carbon nanotube under the same conditions.

We now turn our attention to the postbuckling behavior of a double-walled carbon nanotube subjected

to hydrostatic pressure. Fig. 2 compares the postbuckling behavior for the same three double-walled carbon

nanotubes as shown in Table 1. It is seen that the load-shortening curves seem linear, whereas the load-
deflection curves are really nonlinear. The results show that the postbuckling equilibrium path becomes

lower when the nanotube becomes thinner.
1

arisons of buckling pressure for carbon nanotubes (m ¼ 0:34, L=RII ¼ 10, t ¼ 0:075 nm)

mple E (TPa) Mean radius (nm) qcr (GPa)

1.7 Double-walled RI ¼ 1:095, RII ¼ 0:68 0.6267 (1,2)a

1.7 Single-walled R ¼ 1:095 0.3265 (1,2)

4.7 Single-walled R ¼ 1:095 0.9026 (1,2)

1.7 Double-walled RI ¼ 1:415, RII ¼ 1:0 0.2915 (1,2)

1.7 Single-walled R ¼ 1:415 0.1509 (1,2)

4.7 Single-walled R ¼ 1:415 0.4172 (1,2)

1.7 Double-walled RI ¼ 3:415, RII ¼ 3:0 0.0322 (1,2)

1.7 Single-walled R ¼ 3:415 0.0159 (1,2)

4.7 Single-walled R ¼ 3:415 0.0440 (1,2)

e numbers in brackets indicate the buckling mode ðm; nÞ.
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Fig. 3 compares the postbuckling behaviors for single-walled and double-walled carbon nanotubes of

Example 1. It can be seen that, for the single-walled carbon nanotube, an increase in pressure is usually

required to obtain an increase in deformation, and the postbuckling equilibrium path is stable. In contrast,

for the double-walled carbon nanotube the load decreases as end-shortening increases, and the post-

buckling path is unstable. Note that in the present example E ¼ 1:70 TPa is for the double-walled carbon

nanotube, whereas E ¼ 4:70 TPa is for the single-walled carbon nanotube.

A large variation of Young�s moduli was reported in the open literature (Treacy et al., 1996; Wong et al.,
1997; Lourie and Wagner, 1998; Muster et al., 1998; Yu et al., 2000). We are not aware of the exact value of

the Young�s modulus E for a single-walled carbon nanotube. Fig. 4 shows the postbuckling equilibrium

paths for single-walled and double-walled carbon nanotubes with the fixed Young�s modulus E ¼ 1:0 TPa

and m ¼ 0:27. The shell geometric parameters are taken as in Example 1. In such a case, for the double-

walled carbon nanotube the buckling pressure qcr ¼ 0:36 GPa, while for the single-walled carbon nanotube

the buckling pressure qcr ¼ 0:19 GPa. The results confirm that both buckling pressure and postbuckling

load-deflection curve for the double-walled carbon nanotube are higher than those of the single-walled
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carbon nanotube under the same conditions. Accordingly, if the experimental results show that the

buckling load of a double-walled carbon nanotube is higher than that of the single-walled carbon nanotube,

we believe that the Young�s moduli of these tubes are to have the same value. In contrast, if the experi-
mental results show that the buckling load of a single-walled carbon nanotube is higher than that of the

double-walled carbon nanotube, then we believe that the Young�s modulus of the single-walled carbon

nanotube should be higher than that of the double-walled carbon nanotube.
5. Conclusions

At the conclusion of this work, we now know two different special postbuckling behaviors of carbon

nanotubes under hydrostatic pressure. The single-walled carbon nanotube will have a stable postbuckling

path, whereas the double-walled carbon nanotube will have an unstable postbuckling behavior due to the

presence of van der Waals interaction forces.
It has been reported (Zhou, 1994) that multi-walled carbon nanotubes contain significant concentrations

of defects. According to Figs. 2–4, we come to believe that the pressure-loaded double-walled carbon

nanotube is imperfection-sensitive, and the simulation of a local defect needs to be developed.

The results presented provide a framework for the postbuckling prediction of double-walled carbon

nanotubes subjected to external hydrostatic pressure based on a continuum mechanics model. Verification

of this theoretical prediction poses an interesting research topic for further work.
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Appendix A

In Eq. (33)
B1 ¼
1

1þ c0

m2ð0:5� mÞ
n2b2 þ 0:5m2

B2 ¼
1

c0
� 2

1þ c0

m2ð0:5� mÞ
n2b2 þ 0:5m2

þm2

C0
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c0g06
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c0

��

� m2ð0:5� mÞ
n2b2 þ 0:5m2

�
þC1

n2b2
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1
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þ 1� c0
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��
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1

c0
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m2ð0:5� mÞ
n2b2 þ 0:5m2

ðA:1Þ
and in Eqs. (34)–(36)
H1 ¼
1

8
n2b2

�
þ 1

8
n2b2 g06 þ 8m4

D2

� 1

4
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�
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in the above equations
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