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Abstract

An elastic double-shell model is presented for the buckling and postbuckling of a double-walled carbon nanotube
subjected to external hydrostatic pressure. The analysis is based on a continuum mechanics model in which each tube of
a double-walled carbon nanotube is described as an individual elastic shell and the interlayer friction is negligible
between the inner and outer tubes. The governing equations are based on higher order shear deformation shell theory
with a von Karman-Donnell-type of kinematic nonlinearity. The van der Waals interaction between the inner and outer
nanotubes and the nonlinear prebuckling deformations of the shell are both taken into account. A boundary layer
theory of shell buckling is extended to the case of double-walled carbon nanotubes under hydrostatic pressure. A
singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths.
Numerical results reveal that the single-walled carbon nanotube has a stable postbuckling path, whereas the double-
walled carbon nanotube has an unstable postbuckling behavior due to the presence of van der Waals interaction forces.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes have received considerable attention in many areas of science and industry since they
were first reported in 1991 (Iijima, 1991). Carbon nanotubes are cylindrical macromolecules composed of
carbon atoms in a periodic hexagonal arrangement. Carbon nanotubes possess extraordinary physical
properties such as high stiffness-to-weight and strength-to-weight ratios and enormous electrical and
thermal conductivities. Many believe that carbon nanotubes may provide the ultimate reinforcing materials
for the development of a new class of nanocomposites (see, Thostenson et al., 2001; Qian et al., 2002). To
realize the potential benefits, fundamental understanding of carbon nanotubes is required. Many studies on
the material properties of single-walled and/or multi-walled carbon nanotubes under hydrostatic pressure
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have been performed, see, for example Reich et al. (2000, 2002), Tang et al. (2000, 2002) and Liu et al.
(2001). Buckling phenomenon was described by singularities in the strain energy profile (Yakobson et al.,
1996). Two theoretical approaches to understanding and predicting the buckling behavior of carbon
nanotubes are atomistic molecular-dynamics simulations and continuum mechanics (see Yakobson et al.,
1996; Wong et al., 1997; Ru, 2000a; Das and Wille, 2002; Harik, 2002). Yakobson et al. (1996) presented a
molecular-dynamics simulation of single-walled carbon nanotubes under axial buckling, bending and
torsion, but they did not simulate nanotubes under hydrostatic pressure. Molecular-dynamics simulations
have provided abundant results for the understanding of buckling behaviors of carbon nanotubes. How-
ever, molecular-dynamics simulations are currently limited to very small length and time scales and cannot
deal with the large-sized atomic system, due to the limitations of current computing power. Moreover, at
the nanoscale, experiments are extremely difficult and expensive to conduct. So far, no buckling experi-
ments have been reported for nanotubes under external hydrostatic pressure. As a result, the continuum
mechanics models are expected for the theoretical analysis of buckling behavior of carbon nanotubes.

The importance of the van der Waals interaction and its role in the energetic and elastic deformation of
“molecular” systems have been extensively discussed (Ruoff et al., 1993; Hertel et al., 1998). Ru (2000b,
2001) proposed a continuum shell model to study compressive buckling of a double-walled carbon nano-
tube in the presence of the intertube van der Waals forces, but his solutions are approximate due to the
assumption of equally axial stress resultants of the outer and inner tubes. Recently, Wang et al. (2003a,b)
extend the Ru’s continuum shell model to the case of multi-walled carbon nanotubes under radial pressure
and combined loading. In these studies, the classical shell theory, i.e. the theory based on the Kirchhoff-
Love hypothesis, is used and therefore the transverse shear deformation is usually not accounted for. It is
well known this theory is adequate for cylindrical shells when the radius-to-thickness ratio is greater than
20. It has been shown (Yakobson et al., 1996; Das and Wille, 2002; Liu and Chen, 2003), most carbon
nanotubes have low values of radius-to-thickness ratio. As a result, the continuum mechanics model for
multi-walled carbon nanotubes requires the use of shear deformation shell theory and involves an interlayer
van der Waals interaction. To study the maximum bearing loading under large strain, nonlinear post-
buckling behavior of carbon nanotubes has to be investigated.

The main objective of the present study is to predict the postbuckling behavior of double-walled carbon
nanotubes subjected to hydrostatic pressure. In the present study all thermal, quantum and electromagnetic
effects are neglected. Following Ru (2000b, 2001) an elastic double-shell model is proposed and each tube is
described as an individual elastic shell and the interlayer friction is negligible between the inner and outer
tubes. The governing equations are based on higher order shear deformation shell theory with a von
Karman-Donnell-type of kinematic nonlinearity. The boundary layer theory for shell buckling suggested
by Shen and Chen (1988, 1990) is extended to the case of double-walled carbon nanotubes. A singular
perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths.
The nonlinear prebuckling deformations of the shell and the van der Waals interaction forces are both
taken into account. The numerical illustrations show the full nonlinear postbuckling response of a double-
walled carbon nanotube under hydrostatic pressure, although a comparison is still not available due to the
lack of relevant experimental results or molecular-dynamics simulations.

2. Theoretical development

Consider a double-walled carbon nanotube modeled as a shell system which is subjected to external
pressure g. The outer and inner tubes are assumed to have the same thickness ¢, length L and effective
material constants £ and v, and have mean radii R; and Ry, respectively, as shown in Fig. 1. Each shell is
referred to a coordinate system (X, Y, Z) in which X and Y are in the axial and circumferential directions of
the shell and Z is in the direction of the inward normal to the middle surface. The corresponding dis-
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Fig. 1. An elastic shell model for a double-walled carbon nanotube under hydrostatic pressure.

placements are designated by U, ¥ and W. ¥, and ¥, are the rotations of normals to the middle surface
with respect to the Y- and X-axes, respectively. The origin of the coordinate system is located at the end of
each shell on the middle plane. Let W (X, Y) be the transverse deflection of each tube, and F(X,Y) be the
stress function for the stress resultants defined by N, =F,,, N, = F ,, and N,, = —F ,,, where a comma
denotes partial differentiation with respect to the corresponding coordinates.

The van der Waals interaction potential, as a function of interlayer spacing between adjacent tubes, can
be estimated by the Lennard-Jones model (see Girifalco and Lad, 1956; Girifalco, 1991). Using a method
described in Girifalco and Lad (1956) and Girifalco (1991), the van der Waals force exerted on any atom on
a tube can be estimated by adding up all forces between the atom and all atoms on the other tube. To this
end, the interaction forces between the inner and outer shells can be assumed to be a function of the normal
distance between the inner and outer tubes at that point, i.e. p = py + C[Wn(X,Y) — Wi(X, Y)], in which
and what follows the subscript I and II refer to the outer and inner tubes, respectively. p, is a constant
representing the initial uniform van der Waals pressure between two prior to buckling, and C is a constant
which can be estimated as the second derivative of the van der Waals energy-interlayer spacing. In parti-
cular, the equilibrium distance between a carbon atom and a flat monolayer is around 0.34 nm (Girifalco
and Lad, 1956), so that the initial pressure p, between the inner and outer tubes is zero or negligible if the
initial interlayer spacing is 0.34 nm.

It has been shown (Cumings and Zettl, 2000; Kolmogorov and Crespi, 2000) the friction energy barrier
between adjacent tubes is so low that the tubes could almost freely slid and rotate toward each other. We
assume that no sliding occurs between the outer and inner tubes. We also assume that the tube is empty,
and no initial internal pressure exists. Based on higher order shear deformation shell theory (Reddy and
Liu, 1985), the Karman—Donnell-type nonlinear differential equations for the outer tube, including van der
Waals interaction forces, have readily been derived and can be expressed in terms of a stress function Fj,
two rotations ¥,; and ?’yl, and two transverse displacements W; and W;. They are
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and for the inner tube they are
Loy (Wy) = Lis(¥ 7 (T 1= ~— —. R _
Lyy(Wu) = Lio(Werr) — Li3(Pon) — R_FH’” =L(Wy,Fn) — R—I[po + C(Wn — Wy)] (5)
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~ = 1 — 1~ —
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Ry 2
ZSI(WII) + 2320?,,(11) — 233(?/),11) =0 (7)
Z41(W11) - Z42<'lflxll) + Z43(q’y11) =0 (8)

where the linear operators Zl-j( ) and the nonlinear operator L( ) are defined as in Shen (2001). Because
the nanotubes are assumed to be isotropic, the shell stiffnesses used in these operators will have
Ay =4 = (Ef)"" and D;; = Dy = D = Ef*/[12(1 —v*)]. Note that Eqgs. (1)~(8) are coupled and should be
solved simultaneously.

The two end edges of both outer and inner tubes are assumed to be simply supported or clamped, so that
the boundary conditions are X =0, L:

W=%=0 (9a)

M,=P,=0 (simply supported) (9b)

Y. =0 (clamped) (9¢)
2Ry 2mRy

/0 NadY + /0 NaidY + nRig =0 (9d)

where M, is the bending moment and P, is higher order moment, as defined in Reddy and Liu (1985). Also
we have the closed (or periodicity) condition for each tube

2nRy A7/
/ Ty —o (10a)
0

oY
or
[ (PF @F\ W1 ow\’
S (8 TN () dy =0 10b
/0 Et<6X2 Vaw)ﬂel 2<ay> (106)

Because of Eq. (10a), the in-plane boundary condition 7 = 0 (at X = 0, L) is not needed in Eq. (9a).
It is assumed that the end-shortening displacements of the outer and inner tubes are identical. The
average end-shortening relationship of each shell is defined as
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where 4, is shell end-shortening displacement in the X -direction.

3. Analytical method and asymptotic solutions

Having developed the theory, we are in a position to solve Egs. (1)—(8) with boundary conditions (9).
Before proceeding, it is convenient first to define the following dimensionless quantities [with 7,; in Egs.
(21) and (A.3) below are defined as in Shen (2001)]

X Y L TRyt R cL? R
X=T—, V=4 ﬁzi, 8:—11/27 "/ozl, COZT, Clsz;
L R, TRy L2[12(1 — v2)] R, D Etp
w F L(P., 7P
= ret ey =2t e B e
’ T
M. P) = L2212 4 2N mE R\ (12)
xydx) — TCZ Dt ‘c73t2 x | qc = 3 3 (1 . V2)3/4 L RI
_4q (4+/L)
= ) q 3/2
qc 12 4
: % (%) (],‘,2)3/4 % (Rt1>
The nonlinear equations (1)—(8) may then be written in dimensionless form as
4
ElLn(M) — Co(Wa — M)] — eLiz(Par) — eLiz(Pn) — Fiw = FLIWGLF) + Cy +§(3>”“Aqe3/2 (13)
1
Ly(F)+ W = _EBZL(VVM m) (14)
eLy1 (M) + L3p(Pa) — L3 (W) =0 (15)
eLyy(M) — Lip(Pa) + Las(Py) =0 (16)
and
&L (M) + Co(Wir — W)] — epoLia(Wanr) — €96L13(Pon1) — Fivwe = 708" L(Wat, Fi) — Cy (17)
1
YoLot (Fut) + Wi = *iyoﬂzL(Wh’ W) (18)
&Ly (W) + Lo (Y1) — L3 (Pon) =0 (19)

eLay (W) — Lay(Wour) + La3(Por) = 0 (20)
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The boundary conditions of Eq. (9) become

x=0,n
W=, =0 (22a)
M, =P.=0 (simply supported) (22b)
Y, =0 (clamped) (22¢)
1 27 2621:l 0 +i 2my ﬁza Fi dy +g(3)1/4)» &2 —0 (22d)
2 Jo e 2n 3 e

and the closed condition of Eq. (10b) becomes

2n 62171 262Fi 6m
/ (W‘V aTz)”Vl‘zﬂ(ay) dy=0 )

The unit end-shortening relationship becomes
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In Eq. (12), we introduce an important parameter ¢, which can be re-written as ¢ = n>/(Zz/12). For a
double-walled carbon nanotube we define Zp = (L?/Ryt)[1 — ]l/ ?_ and for a single-walled carbon nanotube
we define Z; = (L?/Rt)[1 —v*]'/, that is the Batdorf shell parameter, which should be greater than 2.85 in
the case of classical linear buckhng analysis (Batdorf, 1947). When Z > 2.85, then ¢ < 1. It has been shown
(Yakobson et al., 1996; Das and Wille, 2002; Liu and Chen, 2003), carbon nanotubes will have large values
of Zz, so that we always have ¢ < 1. When ¢ < 1, both Eqgs. (13)—(20) are of the boundary layer type and
may then be solved by means of a singular perturbation technique. The essence of this procedure, in the
present case, is to assume that

W =w(x,y, &) + VNV(x,é,y, g) + W(x,(,y, €)

F =[xy +Fx &)+ Fx{y,e)

Vo =, (x,0,8) + Palx, & vy6) + Pa(x, Gy, )

Wy, =, (x,y,6) + Po(x, & vr) + Polx, Gy )
where & is a small perturbation parameter (provided Zz > 2.85) as defined in Eq. (12) and w(x,y,s),
Ly, e), i(x,p,€), W, (x, , ) are called regular solutions of the shell, W( Ey,e), F(x, & p,8), Pul(x, &, y,8),

V,(x, & p,e) and W(x,{,y,¢), F(x,{,y,€), VYs(x,{,3,€), ¥,(x,{,y,¢) are the boundary layer solutions near
the x = 0 and x = = edges, respectively, and ¢ and { are the boundary layer variables, defined as

E=x/\E (= (n-x)/Ve (26)

This means the width of the boundary layers is of order v/Rt. In Eq. (25) the regular and boundary layer
solutions are taken in the forms of perturbation expansions as

w(x,y, & ZF’” UP(x,y),  flxp.e) =Y &fV(x,y)

j=0

(25)

, . (27a)
(.8 Zs V(3,8 =Y ()" (x,)
=1
j=1
x, &, v,¢) Z&UH 12 (/“ /2( &), (%, &,y 28//2+2 (//2+2) (x, &) (27b)
W, Lye) =Y &P WU (x,(y), F(x,lye) =Y e/PPFUP(x(y)
- - (27¢)
Wo(x, Lyye) = D eUIR(W) IR 0 y), W, Lyye) = eV (x ()
Jj=1 j=1
The initial buckling mode is assumed to have the form
wﬁz) (x,y) = AEZ]) sin mx sin ny (28a)
wid (x,y) = alA(lzl) sin mx sin ny (28b)

in which a; is a constant and can be determined later.

Substituting Egs. (25)—(27) into Egs. (13)-(20), and collecting terms of the same order of ¢, we obtain
three sets of perturbation equations for the regular and boundary layer solutions, respectively, the details of
which may be found in Shen (2002).
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Then using Egs. (28a) and (28b) to solve these perturbation equations of each order, and matching the
regular solutions with the boundary layer solutions at each end of the shell, we obtain the asymptotic
solutions. For the outer tube, they are

3/2 3/2 X 1) X X 3/2) - X
WI_83/2[/1(()0/)—A(()O/)(cos¢%+a(w>sm¢%) exp(—cx%) A</ (c s¢7+a10 squ 7 )

X exp ( — o n\;_x )] + &[4 sin mxsin ny] + £*[4(}) + 45)) cos 2mx + 4} cos 2ny] + O(&) (29)
e

0V 2O\ 2 )
= Booz (CIJFﬁCoo)zJFS{ By 5 - ﬁcooz

+85/2|:A o/2) (b(S/Z cosdb\/_ 5/2 smdb\/_) exp (—oc\%)

+A3/2 <b5/z cosqS \/_ +b5/2 s1n¢n—\;;>exp<—cxn\;5x>]
+e4[ B

+ B |7 sin mx sin ny]

00 2 - B C0 B'}) cos 2mx + B} cos2ny] + O(&%) (30)

Y= 82[<ch cosd>\/_+cm smqb\/_> exp < —a%) + (c(()? cosqbn—\;;—i—c%) sind)n—\;;)

X exp < - ocn\/_x)} + & [CY cos mxsin ny] + &°[C) sin 2mx] + O(&%) (31)
€

¥, = & [DV sin mx cos ny] + £°[DY) sin 2ny] + O() (32)

Note that the effect of boundary layer solutions is negligible in the higher order terms, so that it does not
appear in Eq. (32). Then for the inner tube it is just necessary to replace —C; and B in Eq. (30) with +C;
and bé’o), and omitting C06 Because B(’0 and bg’o (j=0,2 4) have different values, the axial stress resultants

Ny and Ny are unequal. Also we need to replace 47, Bf,’c , CY and DY in Egs. (29)~(32) with 4Y, BY), ¢
and D,(,ﬁ), so that the asymptotic solutions Wy, Fii, ¥, and ¥, have a similar form.

Note that, all of the coefficients in the above equations are related and can be expressed in terms of 47,
but for the sake of brevity the detailed expressions are not shown, whereas « and ¢ are given in detail in
Appendix A.

Because the end-shortening displacements of the outer and inner tubes are identical, upon substitution of
F; and Fj into Egs. (24a) and (24b), we have

“= % [(B2)® +4B1Bs]'* — Bo} (33)

1

All symbols used in Eq. (33) and Egs. (34)-(36) below are also described in detail in Appendix A. From
Egs. (33) and (A.1) below, it is evident that a; < 1, then inner tube has a lower amplitude than the outer
tube. This follows from the fact that, due to the van der Waals interaction forces, the outer tube is subjected
to internal pressure and the inner tube is subjected to external pressure.

Next, upon substitution of F; and Fj into the boundary condition (22d) and F; and W} into closed

condition (23) and Eq. (24a), the postbuckling equilibrium paths can be written as

, 1
h=7 (3)*PP0 + 224 e) + (34)
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and
5= 80 + P (U + - (33)

In Egs. (34) and (35), (Aﬁ)e?) is taken as the second perturbation parameter relating to the dimensionless
maximum deflection. If the maximum deflection is assumed to be at the point (x,y) = (n/2m, n/2n), from
Eq. (29) we have

A2~ — e+ .. (36a)
where W, is the dimensionless form of the maximum deflection of the outer tube that can be expressed as

W= [e 1201 =) - 6, (36b)

Eqgs. (34)—(36) are employed to obtain numerical results for full nonlinear postbuckling load-shortening
or load-deflection curves of double-walled carbon nanotubes under external hydrostatic pressure, from
which results for single-walled carbon nanotubes are obtained as a limiting case. The initial buckling load
can readily be obtained numerically, by setting W/t = 0 (note that W, # 0). In this case, the minimum
buckling load is determined by considering Eq. (34) for various values of the buckling mode (m, n), which
determine the number of half-waves in the X-direction and of full waves in the Y-direction. Note that
because of Eq. (29), the prebuckling deformation of the shell is nonlinear.

4. Numerical results and discussion

Numerical results are presented in this section for double-walled carbon nanotubes with different values
of shell parameter. As mentioned before, there are no numerical and experimental results available in the
literature, including previous works of Ru (Wang et al., 2003a) and Yakobson (Yakobson et al., 1996), for
the buckling of the single-walled and/or double-walled carbon nanotubes under hydrostatic pressure, no
direct comparison is made in this section.

Before we go to the discussion of the postbuckling response of double-walled carbon nanotubes under
hydrostatic pressure, let us first examine the buckling pressure of the double-walled carbon nanotube. From
Eq. (A.2c), and neglecting prebuckling deformations, one has

4 \ N2
— CE— {[’"_1+/0—C1n2ﬁ2(1—“/o)] + G ~a)

a

1 + q —
(2 +0.5m) | Lo 7o gos(1 4 %)

o

— (37)
127,
where the critical pressure can be computed exactly with buckling mode (m, ). In particular, for single-
walled carbon nanotube without van der Waals forces, the critical pressure can be given by

o
(> +0.5m2) | g6 127

(38)

From Egs. (37) and (38), it can be seen that the critical pressure for the double-walled carbon nanotube
is higher than that associated with the single-walled carbon nanotube with the same outside diameter and
material properties. In fact, for multi-walled carbon nanotubes the outside diameter increases as the
number of layers increases (Lu, 1997), and the material properties are dependent on the layer number
(Tu and Ou-Yang, 2002).
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Note that for thin shell model we have gos = gos = (m* + nzﬁz)z, then relation (38) reduces to the classical
result (Timoshenko and Gere, 1961)

qeci m' + (m2 + nzﬁz)z U (39)
(n2B* +0.5m2) | (m? + n2f*)° 12712;

q:

Taking this fact into account, we expect that Eq. (38) agrees well with molecular-dynamics simulations
for single-walled nanotubes.

Based on the continuum assumption, the key problem in computing is to determine the wall thickness
of the nanotube. Recently, Tu and Ou-Yang (2002) found that the effective Young’s modulus of the multi-
walled carbon nanotube is an apparent function of the number of layers, NV, varying from 4.70 to 1.04 TPa
for N =1 to oo. They provided that the wall thickness of a single-walled carbon nanotube is 0.075 nm,
Poisson’s ratio v = 0.34 and Young’s modulus £ = 4.70 TPa, whereas for a double-walled carbon nano-
tube £ = 1.70 TPa. This value is close to that of experimental results of Treacy et al. (1996), and is used
in the following computation. For the sake of illustration, we consider the initial interlayer spacing bet-
ween the inner and outer tube is 0.34 nm, as mentioned before, in such a case the initial pressure p, is
zero or C; = 0. The van der Waals interaction constant is taken as C = 99.187 GPa/nm (Wang et al.,
2003a,b).

The buckling pressure ¢, (in GPa) for simply supported, double-walled carbon nanotubes subjected to
hydrostatic pressure are calculated and compared in Table 1. Three test examples are considered. Examples
1 and 2 are moderately thick double-walled carbon nanotubes, they have R; = 1.095 nm, R;; = 0.68 nm and
R; = 1.415 nm, Ry; = 1.0 nm, respectively, while Example 3 is a thin double-walled carbon nanotube, which
has R; = 3.415 nm and Ry = 3.0 nm. In Table 1 the single-walled carbon nanotube with R = R; for each
case is treated as a comparator. In computation, the shell length-to-radius ratio L/Ry; = 10 and each shell
thickness is taken as t = 0.075 nm. The results show that the buckling pressure for the single-walled carbon
nanotube is higher than that of the double-walled carbon nanotube, due to the high value of Young’s
modulus £ = 4.70 TPa. The results also confirm that the critical pressure for the double-walled carbon
nanotube is higher than that of the single-walled carbon nanotube under the same conditions.

We now turn our attention to the postbuckling behavior of a double-walled carbon nanotube subjected
to hydrostatic pressure. Fig. 2 compares the postbuckling behavior for the same three double-walled carbon
nanotubes as shown in Table 1. It is seen that the load-shortening curves seem linear, whereas the load-
deflection curves are really nonlinear. The results show that the postbuckling equilibrium path becomes
lower when the nanotube becomes thinner.

Table 1
Comparisons of buckling pressure for carbon nanotubes (v = 0.34, L/Ry; = 10, t = 0.075 nm)
Example E (TPa) Mean radius (nm) g (GPa)
1 1.7 Double-walled R; = 1.095, Ry = 0.68 0.6267 (1,2)
1.7 Single-walled R =1.095 0.3265 (1,2)
4.7 Single-walled R =1.095 0.9026 (1,2)
2 1.7 Double-walled R, =1415 Ry =1.0 0.2915 (1,2)
1.7 Single-walled R =1415 0.1509 (1,2)
4.7 Single-walled R=1415 0.4172 (1,2)
3 1.7 Double-walled R, =3.415 Ry =3.0 0.0322 (1,2)
1.7 Single-walled R =13415 0.0159 (1,2)
4.7 Single-walled R =3415 0.0440 (1,2)

#The numbers in brackets indicate the buckling mode (m,n).



H.-S. Shen | International Journal of Solids and Structures 41 (2004) 2643-2657 2653

10 10
1:R =1.095 nm, R, = 0.68 nm LR =1.095mm,R, =068 nm
2:R=1415nm,R, = 10nm 2R =1415nm,R,=10nm
08F 3:R=3415nm,R,=30nm 08l 3R=3415nm R,=3.0nm
(mn)=(1,2) (mn)=(1.2)
061 06
g g .
O 1 )
= =
T 04t T04
2 \
02t 02
3 3
00 D 00 n L ;
0.00 001 0.02 0.0 02 _ 04 06 08
A (nm) W (nm)

Fig. 2. Postbuckling behavior for double-walled carbon nanotubes under hydrostatic pressure (E = 1.7 TPa, v=0.34, L/Ry; = 10,
t=0.075 nm; 1: R, = 1.095 nm, Ry; = 0.68 nm; 2: R; = 1.415 nm, R;; = 1.0 nm; 3: R; = 3.415 nm, R = 3.0 nm).

Fig. 3 compares the postbuckling behaviors for single-walled and double-walled carbon nanotubes of
Example 1. It can be seen that, for the single-walled carbon nanotube, an increase in pressure is usually
required to obtain an increase in deformation, and the postbuckling equilibrium path is stable. In contrast,
for the double-walled carbon nanotube the load decreases as end-shortening increases, and the post-
buckling path is unstable. Note that in the present example £ = 1.70 TPa is for the double-walled carbon
nanotube, whereas £ = 4.70 TPa is for the single-walled carbon nanotube.

A large variation of Young’s moduli was reported in the open literature (Treacy et al., 1996; Wong et al.,
1997; Lourie and Wagner, 1998; Muster et al., 1998; Yu et al., 2000). We are not aware of the exact value of
the Young’s modulus E for a single-walled carbon nanotube. Fig. 4 shows the postbuckling equilibrium
paths for single-walled and double-walled carbon nanotubes with the fixed Young’s modulus £ = 1.0 TPa
and v = 0.27. The shell geometric parameters are taken as in Example 1. In such a case, for the double-
walled carbon nanotube the buckling pressure g, = 0.36 GPa, while for the single-walled carbon nanotube
the buckling pressure g, = 0.19 GPa. The results confirm that both buckling pressure and postbuckling
load-deflection curve for the double-walled carbon nanotube are higher than those of the single-walled

20 20F
1: double-walled nanotube, q,= 0.63 GPa 1: double-walled nanotube, g,= 0.63 GPa
2: single-walled nanotube, ¢, = 0.90 GPa 2: single-walled nanotube, ¢, = 0.90 GPa
15} (mn=12) 15 Mn)=(L2)

q(GPa
q(GPa)

O'8.00 0.02 004 00 02 04 06 08 10

A, (nm) W (nm)

Fig. 3. Postbuckling behavior for carbon nanotubes under hydrostatic pressure (L = 6.8 nm, ¢ = 0.075 nm; 1: R; = 1.095 nm,
Ry =0.68 nm, E=1.7 TPa, v=0.34, 2: R =1.095 nm, E = 4.7 TPa, v = 0.34).
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06 06
1: double-walled nanotube, g, = 0.36 GPa 1: double-walled nanotube, ¢ = 0.36 GPa
2: single-walled nanotube, q,, = 0.19 GPa 2: singlewalled nanotube, g, = 0.19 GPa
(mn)=(1,2) (mn)=(1,2)

041 04t
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Fig. 4. Postbuckling behavior for carbon nanotubes under hydrostatic pressure (£ = 1.0 TPa, v=0.27, L = 6.8 nm, ¢ = 0.075 nm;
1: R; = 1.095 nm, R;; = 0.68 nm; 2: R = 1.095 nm).

carbon nanotube under the same conditions. Accordingly, if the experimental results show that the
buckling load of a double-walled carbon nanotube is higher than that of the single-walled carbon nanotube,
we believe that the Young’s moduli of these tubes are to have the same value. In contrast, if the experi-
mental results show that the buckling load of a single-walled carbon nanotube is higher than that of the
double-walled carbon nanotube, then we believe that the Young’s modulus of the single-walled carbon
nanotube should be higher than that of the double-walled carbon nanotube.

5. Conclusions

At the conclusion of this work, we now know two different special postbuckling behaviors of carbon
nanotubes under hydrostatic pressure. The single-walled carbon nanotube will have a stable postbuckling
path, whereas the double-walled carbon nanotube will have an unstable postbuckling behavior due to the
presence of van der Waals interaction forces.

It has been reported (Zhou, 1994) that multi-walled carbon nanotubes contain significant concentrations
of defects. According to Figs. 2-4, we come to believe that the pressure-loaded double-walled carbon
nanotube is imperfection-sensitive, and the simulation of a local defect needs to be developed.

The results presented provide a framework for the postbuckling prediction of double-walled carbon
nanotubes subjected to external hydrostatic pressure based on a continuum mechanics model. Verification
of this theoretical prediction poses an interesting research topic for further work.
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Appendix A

In Eq. (33)
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in the above equations
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